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Mycobacteria grow and divide asymmetrically, creating variability
in growth pole age, growth properties, and antibiotic susceptibil-
ities. Here, we investigate the importance of growth pole age and
other growth properties in determining the spectrum of responses
ofMycobacterium smegmatis to challenge with rifampicin. We used
a combination of live-cell microscopy and modeling to prospectively
identify subpopulations with altered rifampicin susceptibility. We
found two subpopulations that had increased susceptibility. At the
initiation of treatment, susceptible cells were either small and at
early stages of the cell cycle, or large and in later stages of their cell
cycle. In contrast to this temporal window of susceptibility, toler-
ance was associated with factors inherited at division: long birth
length and mature growth poles. Thus, rifampicin response is com-
plex and due to a combination of differences established from
both asymmetric division and the timing of treatment relative to
cell birth.

antibiotic susceptibility | single cell | mathematical modeling |
mycobacteria | cell biology

The unusually long period of antibiotic exposure needed for
treatment of tuberculosis is necessitated by the presence of

Mycobacterium tuberculosis bacilli that respond slowly to drug
treatment (1, 2). Although heritable drug resistance is generated by
genetic mutations or acquisition of drug-resistant genes, pheno-
typic resistance (tolerance) enables subpopulations to resist anti-
biotic clearance under particular environmental conditions (3).
Nongrowing, drug-tolerant cells are commonly called persister cells
and are often thought of as a discrete and rare group of cells (4, 5).
However, we have observed a spectrum of responses in Mycobac-
terium smegmatis at the single-cell level to antibiotic treatment (6).
Distinct subpopulations may be generated either deterministically
through a genetically encoded mechanism, which creates differ-
ences in cell physiology, or through stochastic and temporary dif-
ferences in the ways individual cells interact with drugs (7). Defining
these subpopulations requires methods to investigate the responses
of individual cells to antibiotic stress and a quantitative framework
to understand how the single-cell biology relates to the ability of a
population of cells to tolerate antibiotics.
To identify the critical cell cycle parameters that define individual

cells’ susceptibility to antibiotics, we have previously developed a
microfluidics-based live-cell imaging system to observe the growth
of individual mycobacteria (6). Using this live-cell imaging platform,
we observed asymmetric division and heterogeneity in elongation
rates among closely related cells, establishing that mycobacteria
elongate primarily from the growth pole inherited from the parent
cell at division. Corroborating this asymmetric polar growth pattern,
Meniche and colleagues (8) found that the M. smegmatis cell wall
synthesis machinery is localized to the subpolar region and pref-
erentially at the old pole. Additional groups have reported asym-
metric septum localization and faster growth from older poles (9,
10). Asymmetric growth has alternatively been attributed to a longer
available time for the old pole to elongate between cytokinesis and
division events (11, 12). Although the molecular mechanisms of

asymmetric growth are not well understood, there is consensus
across several experimental settings that mycobacteria divide
asymmetrically such that the sister inheriting the new pole is
smaller and slower growing than the sister inheriting the old pole
(9–13). At division, the polarized cell generates daughter cells
that are functionally distinct. One daughter cell, which we call the
accelerator cell, inherits a new pole and the oldest (growing) pole
and elongates faster from the old pole. Its sister cell, the alternator
cell, inherits one nongrowing pole of intermediate age and one
new pole. The alternator cell must switch its direction of growth by
elongating from its older, previously slowly growing pole. Some
accelerator cells inherit growth poles created in the immediate
previous generation, whereas other accelerator cells inherit growth
poles created several generations earlier. Cells with the older
growth poles elongate faster and divide at a larger size than do cells
with younger growth poles. This pattern of growth asymmetry
quickly and deterministically creates population heterogeneity that
is mirrored by differential tolerance to antibiotic treatment. Alter-
nator cells are more tolerant to cell wall-targeting drugs (isoniazid,
cycloserine, and meropenem), whereas accelerator cells are more
tolerant to the transcription inhibitor rifampicin (6).
In this work, our goal was to determine the relative effect of growth

pole age on rifampicin tolerance and to understand whether other
cell state and growth parameters were more important. We hy-
pothesized that characteristics of cell physiology such as the cell cycle
state may be important determinants of antibiotic susceptibility. In
Escherichia coli, susceptibility to antibiotics changes as cells enter
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different stages of the cell cycle (4, 14, 15). This may be due to
differences in the state of chromosome replication or cell wall
permeability. Because drug and stress tolerance is likely due to the
convergence of multiple dynamic processes, we hypothesized that
some combinations of parameters would be characteristic of a cell
physiology that correlates with differential susceptibility to rifam-
picin treatment. We evaluated the growth and cell cycle states of
individual M. smegmatis cells and used data-driven modeling to
quantify the contribution of each factor to rifampicin response. Our
study suggests that cell-to-cell variability in rifampicin response is
due to a combination of differences arising from mycobacteria’s
asymmetric growth and division and transient changes to cell state
that coordinate roughly with cell cycle and age. Thus, phenotypic
rifampicin-tolerant mycobacteria do not consist of one type of
persister cell, but are a dynamic and variable set of cells that arise
through asymmetry and transient tolerant stages of the cell cycle.

Results
Measuring Cell Growth Parameters and Rifampicin Tolerance. Our
experimental setup (Fig. 1A) enabled us to provide M. smegmatis
cells with a homogeneous growth environment during long-term,
live-cell microscopy and control the timing and levels of rifampicin
challenge (6). The initial growth period established microcolonies
and allowed us to identify a predrug control population, i.e., cells
that divided before the application of drug (Fig. 1B). After 10.5 h
of growth, cells were challenged with rifampicin for 6 h and eval-
uated for antibiotic susceptibility (Fig. 1C). We defined drug-
tolerant or “live” cells as those that elongated or divided with at
least one elongating daughter cell during the 9.75-h recovery
period. To analyze the characteristics of rifampicin-susceptible
and rifampicin-tolerant cells, we calculated several cell properties
during the annotation and analysis process. We used a fluorescent
reporter strain expressing single-stranded DNA-binding protein
fused to green fluorescent protein (SSB-GFP) (Fig. 1D) to derive
cell cycle state, length, and age at the start of treatment, as well as
short-term and average growth rates (Methods). In these cells,
single or double foci appear at the replisome during active DNA
replication (16).
We treated the cells in various experiments with 0.5, 2, and 3× of

the minimal inhibitory concentration (MIC) of rifampicin (20, 80, and
120 μg/mL, respectively) (SI Appendix, Table S1). Our analysis fo-
cused on the cells present in the microfluidic device at the start of 3×
MIC rifampicin drug treatment. This concentration corresponds
roughly to the concentration of rifampicin in human pulmonary
lesions after a single dose of rifampicin (17). SI Appendix, Table S1
provides a summary of the dataset, including the number of an-
notated cells and the number of tolerant cells for each rifampicin
concentration.
To determine whether susceptible cells were nonviable or alter-

natively delayed in resuming growth, we performed an additional
experiment, in which we evaluated the growth of 286 cells with a
longer recovery period. We annotated the growth parameters of
these cells when rifampicin was applied. Seventy-one percent would
have been annotated as susceptible at our standard 9.75 h of re-
covery period. During the extended 16-h recovery period, 97% of
cells classified as susceptible did not show any signs of growth in the
last 6 h. To assess whether there were viable but nonculturable cells
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Fig. 1. Measuring drug treatment response in M. smegmatis. (A) Experi-
ment design, cellular parameters, and microfluidics device schematic. Two
syringes, controlled by microfluidic pumps, were connected to a mixing
device.M. smegmatis SSB-GFP cells were seeded in a microfluidics device and
then placed in a heated environmental chamber for imaging every 15 min. The
media syringe pump dispensed medium for the entire duration of the experiment
(26.25 h), and the drug syringe pump was activated 10 h after the start of the
experiment and dispensed rifampicin for 6 h. (B) Cellular parameters measured
before and during treatment. Cells that were born and divided during the predrug
growth period were used as controls. Cells that were born after the time lapse
began but had not divided before the drug treatment were annotated for cell
length and relative growth pole age (numbers, in black: 1 = youngest pole,
4 = oldest pole) for the remainder of the experiment. Accelerator and alternator
cells are denoted as “acc” or “alt,” respectively. Schematics of cells demonstrate
two possible drug treatment outcomes. A cell was classified as rifampicin-tolerant
if it either resumed growth during the recovery period or produced at least one
daughter cell that resumed growth. (C) Microfluidic device image sequence. The
brightfield image sequence depicts an M. smegmatis microcolony (Left to Right)
immediately before drug treatment, immediately after drug treatment, and
at the end of the recovery period. Two drug treatment outcomes are illustrated:

rifampicin-tolerant (green) and rifampicin-susceptible (violet). (D) Cellular
parameters measured at the start of treatment. The following cell param-
eters were tracked: length at birth (indicated as lengthb), length and age at
division (indicated as lengthts and agets), average growth rate and elonga-
tion rate immediately before treatment start (indicated as growthtot and
growthinst), and presence of SSB-foci (green dots in the schematic), which
were used to determine cell cycle stage and timing (B-C-D line, where C is
DNA replication stage). SSB-foci were recorded and tracked throughout the
course of growth, drug treatment, and recovery.
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(VBNCs) among the susceptible cells, we performed an additional
experiment, in which we added red-fluorescent propidium iodide
(PI) stain to the chambers at the very end of the standard recovery
period. PI is used to identify cells with disrupted membranes;
these cells will take up the stain, whereupon the PI fluoresces
upon intercalation with DNA (SI Appendix, Fig. S1) (18). Of 92
total cells, 81 did not grow after the drug treatment and were thus
classified as susceptible. All 81 susceptible cells were PI+ (as in SI
Appendix, Fig. S1), thus suggesting that VBNCs do not make up a
significant proportion of the susceptible population.

Rifampicin-Tolerant Cells Are Larger.Accelerators are overrepresented
in the rifampicin-tolerant subpopulations across a broad range of
rifampicin concentrations (0.5, 2, and 3×MIC) (SI Appendix, Table
S1). Because accelerator cells are both larger at birth (SI Appendix,
Fig. S2) and faster-growing (SI Appendix, Fig. S3) than alternator
cells (6), we investigated whether tolerant and susceptible sub-
populations exhibit differences in size and growth rate (Fig. 2).
Rifampicin-tolerant cells were significantly longer at birth (lengthb;
3.7 ± 0.7 μm) compared with susceptible cells (3.2 ± 0.8 μm) (Fig.
2A, Bottom histogram, and SI Appendix, Fig. S4). However, there
were no differences in the growth rates of tolerant and susceptible
subpopulations (Fig. 2A and SI Appendix, Figs. S5 and S6).
We have previously observed microcolony-to-microcolony var-

iation in rifampicin susceptibility but also synchronized division
times within individual microcolonies (6). In E. coli, susceptibility
to antibiotics changes as cells enter different stages of the cell
cycle (4, 14, 15). We therefore hypothesized that cell parameters
that describe cell state at the start of drug treatment such as cell
cycle state, cell age, and cell size may determine treatment outcome.
Tolerant cells were significantly larger not only at birth but also at
the start of rifampicin treatment (lengthts; 5.3 ± 1.1 μm) compared
with susceptible cells (4.3 ± 1.4 μm) (Fig. 2B and SI Appendix, Fig.
S7). Because older cells are longer than newly divided cells, we
expected that differences in susceptible vs. tolerant subpopulations
in cell age at the time of treatment (agets) would correspond with
lengthts differences. Whereas lengthts was different in susceptible
and tolerant subpopulations, there was no significant difference in
the agets or cell cycle state of tolerant cells compared with suscep-
tible cells (Fig. 2 B and C).

Two Rifampicin-Susceptible Subpopulations Have Distinct Growth and
Cell State Properties. Because rifampicin-tolerant and rifampicin-
susceptible cells differ significantly in size, but not in age or cell cycle
state, we reasoned that other growth parameters must contribute to
rifampicin susceptibility or that the drug response categorizations
were too broad. Whereas most susceptible cells simply stopped
growing and never resumed growth during the recovery period,
around 30% of susceptible cells divided into two nongrowing
daughters after the start of rifampicin treatment. We therefore
created two subcategories of susceptible cells: “dead” cells that did
not grow or divide during treatment or during the recovery period
and “zombie” cells that were present at treatment start and divided
into two nongrowing cells after the start of treatment (Fig. 3A).
We found no significant difference in the initial growth rates

or birth lengths of dead and zombie cells (SI Appendix, Figs. S8–
S12). However, dead and zombie cells exhibited starkly opposite
length, age, and cell cycle characteristics at the start of drug
treatment (Fig. 3 B and C). The median lengthts of dead cells at
treatment start (3.9 ± 1.2 μm) was significantly shorter than that
of the live subpopulation (5.3 ± 1.1 μm) and was similar to the
birth size of newly divided cells in the predrug population (3.5 ±
0.8 μm). In contrast, zombie cells were longer than live and dead
cells (5.6 ± 1.3 μm) and were closer to the cell length just before
division (6.3 ± 1.2 μm). These length differences at the start of
treatment were significant for both live–dead and dead–zombie
cell comparisons across rifampicin concentrations (SI Appendix,
Figs. S13 and S14). The division of zombie cells following exposure

to rifampicin produced daughter cells (3.3 ± 0.8 μm) close to the
size of newly born cells in the predrug population (3.5 ± 0.8 μm).
These observations suggest that susceptible cells on the verge of
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Fig. 2. Rifampicin-tolerant cells are larger and have older growth poles than
susceptible cells. (A) Scatter plot of cell birth length (lengthb), average growth
rate from birth to treatment start (growthtot), and drug treatment outcome.
Histograms display the distribution of tolerant and susceptible cells along each
axis; distributions were normalized by setting the area to one. Each bin of the
histogram of the x axis (lengthb) covers 0.29 μm of cell length, and each bin of
the y axis (growth rate) covers 0.11 μm/h. Rifampicin-tolerant cells had a larger
average length at birth (P < 0.005). No significant difference was detected for
the average growth rate of susceptible and tolerant subpopulations. (B) Scatter
plot of cell age (agets) and length (lengthts) at the start of drug treatment and
drug treatment outcome. Each bin of the histogram of the x axis (agets) spans
0.36 h of cell age, and each bin of the y axis (lengthts) spans 0.43 μmof cell length
at treatment start. Drug-tolerant cells had a larger average length at treatment
start (P < 0.005). No significant difference was detected for the average age of
susceptible and tolerant subpopulations. (C) Distribution of cell cycle stages
(B prereplication, early C replication, late C replication, D postreplication, and E
predivision replication) at the start of drug treatment. There was no significant
difference between cell cycle distribution for tolerant and susceptible cells.
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division at the time of exposure to rifampicin are able to complete
the cell division.
Consistent with the cell lengths among the dead, live, and zombie

subpopulations, the agets of the tolerant subpopulation (1.5 ± 1.1 h)
was significantly different from dead and zombie cell median ages
(Fig. 3B). Dead cells were very young and were born 0.9 ± 1.0 h
before rifampicin exposure, whereas zombie cells were much older,
born 2.4 ± 1.0 h before the rifampicin exposure. The difference was
consistent across rifampicin treatment concentrations (SI Appendix,
Figs. S15 and S16). Dividing the susceptible subpopulation into
dead and zombie cells revealed differences in cell cycle stages that
correspond to the differences we observed in age and length (Fig. 3
B and C). Compared with live cells (and the entire population at
start of treatment as control), dead cells exhibited a skewed dis-
tribution toward the B and early C cell cycle stages. The distribu-
tion in zombie cells was skewed toward late C, D, and E. Together,
these data suggest that M. smegmatis cells are more susceptible to
rifampicin at the early and late stages of the cell cycle.

We recategorized the susceptible cells as dead or zombie in our
smaller extended recovery and PI staining data to assess whether
one of these subpopulations was more likely to resume growth in
the extended recovery time. Of the 204 susceptible cells, 145 were
classified as dead (51% of total) and 59 were classified as zombies
(20% of total). During the extended recovery period of 16 h,
96.5% of dead cells and 98.3% of zombie-descendant cells showed
no signs of growth. PI staining at the end of the recovery period
also failed to demonstrate noticeable differences between dead
cells and zombie-descendant cells.

Partial Least-Squares Regression Enables Multivariate Description of
Susceptible and Tolerant Subpopulations. Using single parameters,
we were able to describe differences among subpopulations after
exposure to rifampicin. To quantitatively describe each subpopula-
tion in terms of multiple cellular parameters, we used partial least-
squares regression (PLSR). PLSR is an analytical method that links
predictor variables with response variables. The following predictor
(“X”) variables were analyzed: pole age, lengthb, lengthts, agets,
growthinst, growthtot, stagets, start of DNA replication (C cycle)
relative to the start of treatment, and concentration of rifampicin.
Treatment outcome (live, dead, or zombie) was the qualitative re-
sponse (“Y”) variable.
To quantify the relative contributions of each predictor variable

to a particular outcome, we evaluated the regression coefficients
of the PLSR analysis. For live cells, the strongest contributing
variables were a negative association with alternator cells and a
positive association with accelerator cells that had older growth
poles and larger birth length (Fig. 4A). Thus, cells with a live
outcome are more likely to be accelerator cells that had a large
birth size. For dead cells, the strongest contributing factors were
negative associations with length at treatment start and age at
treatment start, negative associations with late cell cycle stages
such as D and E (DNA replication following a D period but be-
fore division), and positive associations with early cell cycle stages
B and early C (Fig. 4A). We note that that the relatively short B
cycle was not detected in all of the cells because some cells may
have begun replication before birth (E period), whereas in others,
the B period may have been too short to detect in the 15-min
imaging intervals. This imaging interval could not be shortened
without phototoxicity effects. We conclude that dead cells are
characterized as young, small, and in the early stages of the cell
cycle. For zombie cells, the strongest contributing factors were
positive associations with length at treatment start and age at
treatment start, positive associations with late cell cycle stages such
as D and E, and negative associations with early cell cycle stages B
and early C (Fig. 4A). Zombie cells are therefore characterized by
being very large, old, and in the late stages of the cell cycle at the
time of rifampicin application.
Many of the cellular parameters are interrelated. To quantify

the relationships among variables in each principal component, we
evaluated the loadings (Fig. 4B). In loading plots, the projection of
predictor variables and a response variable to a new space creates
a linear combination of loading coefficients that approximate the
original variables, allowing examination of the relationships
among them. The variables situated near each other tend to be
correlated. The graph may be additionally interpreted by identi-
fying a Y variable of interest and constructing a line through that
variable and through the origin. Other X and Y variables should be
orthogonally projected onto that line. Variables on opposite sides
of the projected line are negatively correlated, whereas variables
on the same side of the line are positively correlated to variables
situated near them. We observed a close proximity of growth pole
age above 3 and cell length at birth in the loadings (Fig. 4B),
suggesting that the previously observed link between pole age and
tolerance of accelerator cells to rifampicin may be adequately
described strictly in terms of a cell’s size at birth. Additionally, the
substantial second-component variation for positions of agets and
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Fig. 3. Two rifampicin-susceptible subpopulations have distinct growth and
cell state properties. (A) Subcategorization of susceptible cell populations.
Susceptible cell classification was refined by introducing two subcategories
of nonelongating susceptible cells: (i) dead cells that did not divide after the
application of drug and (ii) zombie cells, which divided into two non-
elongating cells after the start of rifampicin treatment. (B) Scatter plot of
age (agets) and length (lengthts) at the start of drug treatment and drug
treatment outcome. The histogram bin size is identical to Fig. 2B. The dif-
ference in lengthts was significant for two pairs: live–dead (P < 0.0001), and
dead–zombie (P < 0.0001). The difference in birth time relative to the start
of drug treatment was significant for all three pairs: live–dead (P < 0.001),
live–zombie (P < 0.0005), and dead–zombie (P < 0.0001). (C) Distribution of
cell cycle stages (B prereplication, early C replication, late C replication, D
postreplication, and E predivision replication) at the start of drug treatment.
Refined drug-susceptible cell categorization demonstrates that compared
with the drug-tolerant population, the dead cell population was skewed
toward early cell cycle stages (P < 0.0005), whereas the zombie population
was skewed toward late cell cycle stages (P < 0.001).
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lengthts on the loading plot suggests that these variables do not
always travel together, and therefore each has a unique biological
significance in relation to rifampicin susceptibility.

Parameter Sorting Enables Moderate Prediction of Tolerant, Dead, and
Zombie Subpopulations.We have used analysis of single (Figs. 2 and
3) and multiple cellular parameters (Fig. 4 A and B) to charac-
terize the relationships of cell growth parameters to treatment
outcome. We next attempted to predict the live–dead–zombie
outcome of a treatment by codifying these descriptors. We sorted
cells in a test set population according to their phenotypic param-
eters. Both high-contribution parameters (lengthts and agets) (Fig.
4B and SI Appendix, Table S2) were chosen for the filter. In addi-
tion, we included two medium-contribution parameters (accelerator
and alternator status, lengthb) (Fig. 4B and SI Appendix, Table S2)
because they captured live-cell population variability particularly
well (Fig. 4A). Other medium-contribution parameters (early C and
D cell cycle stage) were not chosen because dead and zombie cell
populations were described by high-contribution parameters. Two
separate filter sets were created for accelerator and alternator cells,
due to their varying functional characteristics. The length and age
filtering parameters were determined using accelerator/alternator
box plot graphs derived from our main dataset (SI Appendix, Figs.
S17–S19). The filters were then tested against a separate test set
consisting of 190 annotated cells.
The filtering process for both the accelerators and alternator

cells in the test set consisted of two similar steps (Fig. 4C). First,
a cell length and age-based filter was run against the test set to
select cells that were deemed similar to zombie cells. The remaining
cells were then subjected to a second round of filtering to select the
dead subpopulation. Cells that remained after the two filtering
steps were considered to be the live subpopulation. In total, our
sorting algorithm improved the total prediction accuracy (60%) by
23 percentage points (SI Appendix, Table S2) compared with a
purely random baseline (37%) (refer to SI Appendix for calculations
of the random baseline). At 60% accuracy, our data and model
suggest that simple growth parameters beyond accelerator and al-
ternator cell types are associated with cell physiologies that are
important in rifampicin tolerance at a single-cell level.

Discussion
To understand whether growth pole age and other growth and
cell cycle factors distinguish rifampicin-tolerant and rifampicin-
susceptible mycobacteria, we have constructed a compendium of
cellular growth and cell cycle parameters and their relation to ri-
fampicin treatment response. Reconciliation of how the single
growth and cell cycle parameters correlated with drug response
required separation of rifampicin-susceptible cells into two distinct
categories. We found that age and cell length at the start of drug
treatment strongly correlated with drug susceptibility, with suscep-
tible cells frequently either in early or late, but not intermediate,
stages of the cell cycle. In contrast, drug tolerance was closely
correlated with long cell length and advanced growth pole age at
birth. By creating a rule-based filter, we were able to capture a high
degree of variability in treatment outcome with these very simple
functional parameters. Thus, moderate cell-to-cell differences in
growth state reflect important differences in cell physiology that
affect the bacterium’s ability to experience or respond to rifampicin.
These growth parameters are generated through a combination of
differences in cell cycle state at the time of drug treatment and in
cell size arising from asymmetric division. The bacterial drug re-
sponse field has concentrated on identifying single factors of tol-
erance (19); however, our findings illustrate that it may be critical to
evaluate the roles of several cell state factors simultaneously in
single cells.
Although many of the growth factors are connected to each

other, some factors were not overrepresented in either susceptible
or tolerant subpopulations. For example, cell size correlates with
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Fig. 4. Using phenotypic characteristics to predict rifampicin (rif) treatment out-
come. (A) Partial least-squares regression coefficients (coef) of cellular parameters.
The correlations are shown between rifampicin treatment outcome and the
phenotypic M. smegmatis characteristics that served as outcome predictor vari-
ables. The y axis represents relative correlation strength (maximum 1.0). Positive
values represent covariable relationships between the input–output variable pair,
whereas negative values represent negative correlation. SEs displayed as error bars
at the end of each columnwere calculatedwith jack-knifing. Arrows at the bottom
represent the most important contributions to each of the treatment outcomes;
arrow direction represents positive (up) and negative (down) correlations. (B) PLSR
loading plot of cellular parameters. The loading plot demonstrates the relative
influence of predictor values on drug treatment outcome, i.e., howwell x variables
correlate with y, and how responses vary in relation to each other. The low con-
tribution values are 1, B cycle state; 2, elongation rate immediately before treat-
ment start (growthinst, μm/h); 3, pole age 2 (young accelerator); 4, C cycle duration
(h); 5, drug concentration (μg/mL); 6, average growth rate (growthtot, μm/h); 7, late
C cycle state; and 8, E cycle state. (C) Flowchart of phenotype selection rules for
predicting rifampicin treatment outcome. The categorization process consisted of
splitting the bulk population into accelerators and alternators and then defining
zombie and dead cells by using cell length and age thresholds derived from the
main dataset. At each sequential step, cells that met the predefined selection cri-
teria were assigned to a particular drug treatment classification: zombie, dead,
and, finally, live. Drug tolerance response was then determined for cells in a sep-
arate test set. Sixty-percent of the cells in a test set were correctly identified as
either live, dead, or zombie, compared to 37% when using random selection.
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growth rate at the population level, but cell size and growth rate are
not strictly correlated in single cells. It is widely reported that rapidly
growing E. coli cells are more susceptible in bulk to antibiotic
treatment, but that single-cell growth rate is not associated with
isoniazid susceptibility in M. smegmatis (20–22). Using multivariate
PLSR modeling, we found that cell size, but not growth rate, was
significantly associated with rifampicin susceptibility. Thus, our
study emphasizes that factors that alter drug susceptibility in bulk
may not translate to differential antibiotic susceptibilities at the
single-cell level.
We initially hypothesized that dead and zombie cells may be

different in their response to rifampicin and that one of these
populations may contain VBNCs. However, all of the dead and
zombie-descendant cells stained with PI, indicating that their mem-
branes were extremely disrupted. Instead, our data suggest that
susceptible cells are at the early or late (but not intermediate) stages
of the cell cycle, and therefore cells are more susceptible to rifam-
picin just before or after division. It remains to be discovered how
death is mechanistically similar or dissimilar in these two sub-
populations. It may be that dead and zombie cells are in the same
cellular state, but are only separated by a division event that is not
dependent on new transcription.
Our data and modeling suggest that mycobacterial growth and

cell cycle state reflect important multifactorial differences in cell
physiology that together influence the ability of individual bacteria
to tolerate rifampicin treatment. Whereas other studies have
sought to identify growth outliers associated with persister cells,
we find here that even moderate variation in growth and cell cycle
parameters is associated with differential antibiotic susceptibility
(19). These states may arise through a combination of inherent size
differences from asymmetric growth and division and the timing of
treatment in relation to the cell cycle state of individual cells. How
these temporal and inherent growth parameters reflect cell physi-
ologies with various abilities to tolerate rifampicin stress will be an
important question for future studies. Cells born large may be
more tolerant if they have more copies of rifampicin’s target, the
beta subunit of RNA polymerase (RpoB), per chromosome copy
because of their larger cell volume; more copies of RpoB may
enable cells to maintain a sufficient pool of functional protein to
survive and recover. Another possibility is that cells near division or

born small may be more drug-permeable or have decreased efflux
capabilities, thus exposing these vulnerable cells to more drug.
A time window of susceptibility may not be unique to mycobac-

teria. Other studies have found that E. coli tightly control pro-
tein induction at stationary exit and synchronize the timing of a lag
before regrowth following antibiotic treatment (14, 15). Mycobac-
teria may use similar mechanisms to adapt the timing of their stress
response. Alternatively, this time window may arise from changes to
cell state due to cell cycle-related patterns of transcription and
translation as in other microbes (23, 24). Our findings that myco-
bacterial drug tolerance has variable components via the timing of
birth and cell size at birth open a new conceptual framework of
rapid and cyclic changes to drug susceptibility that may be antici-
pated and quantified. The suggested presence of phenotypic sub-
populations of cells in pathogenic mycobacteria that may be
preferentially targeted by certain antibiotics could lead to a more
rational method of designing drug combination therapies.

Methods
Cell Culturing andMicroscopy.WeusedM. smegmatis strain mc2155 transformed
with a hygromycin-resistant replicating plasmid expressing single-stranded
binding protein fused to green fluorescent protein (SSB-GFP), as described
previously (16). Time-lapse images were acquired every 15 min for a duration of
26.25 h using a widefield DeltaVision PersonalDV (Applied Precision) with a
hardware-based autofocus. See also SI Appendix, SI Methods.

Data Analysis. Statistical analysis was performed using MATLAB 2015b (The
Mathworks). Significance of association between drug-tolerant and drug-sus-
ceptible accelerator and alternator cells was examined with a Fisher test. All
other distributionswere comparedwith oneanother using aWilcoxon rank sum
test. The significance threshold was set at P = 0.01. All provided subpopulation
values are medians, except for agets, which was a mean value. SD (S-value) for
sample averages was calculated in MATLAB. PLSR analysis was performed in
SIMCA (v14). Refer to SI Appendix, SI Methods, for additional methods.
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